Complex Interpolation of Compact Operators. an Update
نویسندگان
چکیده
After 41 years it is still not known whether an operator acting on a Banach pair and which acts compactly on one or both of the “endpoint” spaces also acts compactly on the complex interpolation spaces generated by the pair. We report some recent steps towards solving this and related problems.
منابع مشابه
Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملOn Compactness in Complex Interpolation
We show that, in complex interpolation, an operator function that is compact on one side of the interpolation scale will be compact for all proper interpolating spaces if the right hand side (Y , Y ) is reduced to a single space. A corresponding result, in restricted generality, is shown if the left hand side (X, X) is reduced to a single space. These results are derived from the fact that a ho...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملA Class of compact operators on homogeneous spaces
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
متن کامل